Jessica's Rural Words
  • Home
  • Blog
  • About
  • Contact
Data visualisation
July 4 2018

Building a rural data visualisation community?

While many people are familiar with terms such as data collection, data storage and data analysis, there has often been a gap in how we extract information and present it in meaningful ways for different audiences. ‘Data visualisation’ is changing that, providing an integrated means of letting people explore data. We spend months, years, often decades, collecting data so it makes sense to consider how we process, analyse, present and disseminate our findings. What does data visualisation mean for rural communities? Jessica Sellick investigates.

What is data visualisation? Back in 1987 the National Science Foundation described it as “a method for seeing the unseen. It enriches the process of scientific discovery and fosters profound and unexpected insights…all people with normal perceptual abilities are predominantly visual” (page 7).

This graphic representation of quantitative information can be traced back to the earliest map making (for navigation and exploration) and cartography (I’m thinking here of Charles Booth’s 1889 poverty map); statistics, medicine and other fields. Along the way, developments in technologies (printing), empirical recording (i.e., numbers pertaining to people gathered in large and periodic series) enabled the wider use of graphics. From maps, diagrams and graphs that were initially hand-drawn (piece by piece) then etched onto copper-plate; through to computer software. Different types of sub-fields of data visualisation have emerged. Information visualisation uses tables, graphs, maps through to files and lines of code in software systems to depict large-scale collections of information. Cartographic visualisation concentrates on the spatial domains, tables and graphs on statistical analysis. And scientific visualisation is concerned with the depiction of architectural, meteorological, medical and biological phenomena – presenting volumes, surfaces and other data components such as time and distance. There is of course overlap between all of these strands, for they share a common history.

In essence, data visualisation is a broad term used for presenting information in a visual way; both numerical and non-numerical data in static or interactive graphics. While it is not new, our desire to find new ways to help us make sense of information continues to grow. As technology has developed and moved on it has become easier for anyone to create and/or share data visualisations.

Why use data visualisation? We collect lots of raw data (often called source data, primary data or atomic data); and analysing this data and then presenting it visually can help people interact with the information and understand what is happening in ways that might not be apparent if they were to look at raw data or read a long text. So data visualisation makes data more accessible to people internally within an organisation (e.g. to see patterns or trends) and to external, non-specialist, audiences. It can, for example, help Governments, organisations or businesses to make decisions (e.g. to understand the outcomes of public policy or customer preferences) or to pinpoint emerging trends (i.e., comprehending information quickly, identifying relationships and patterns, and communicating this to others in bitesize chunks). Examples of data visualisation in academic circles includes work undertaken by the LSE library; in policy circles work undertaken by the National Audit Office (NAO) on infographics and interactive data-sets , DWP’s sketchnoting; and Defra’s Data Programme; and in the voluntary & community and charitable sectors such as work by Citizens Advice. All of these examples seek to enhance the ways in which we collect, process, understand, present and disseminate data.

There are lots of advantages to data visualisation and its use has been taken up widely. Indeed the top trends for 2018 include an estimated 39% increase in demand for data scientists and data engineers over the next three-years – but also an expectation among employers that all employees will become familiar and comfortable with data. This points towards a continued growth in tools and resources to make the benefits of data visualisation more accessible to everyone. The top trends also identify how open data provides opportunities for organisations to enhance their own data and draw new insights.

It is also worth noting that many RSN members have not / do not receive any formal training in data visualisation: for many of us presently rely upon statistical packages with limited visualisation capabilities (e.g. spreadsheets, word processing programmes) and/or by the software to which we can access and/or afford. Similarly, the variety of data types that exists means finding the most appropriate means of illustrating this diversity can be a challenge. And because data visualisation only presents snapshots of larger projects/documents it raises doubts about the reliability of findings (i.e., is the purpose to persuade people of a particular point of view and/or represent an entire dataset?) While a range of digital tools are available (and emerging), sometimes external support is required to explore the data and designs.

If data visualisation is becoming increasingly important, where do you start? Answering this question depends on what data you are collecting or hold; how and why you want to present data visually: who are your intended audiences? What are the key points you want the visualisation to raise? How much detail needs to be presented? How can this data be shared in a meaningful way with the audience(s) you want to target? Is the data you are using quantitative or qualitative?

Having responses to these questions can assist in guiding when, what and how to present the data. For example, this may include developing images which show facts and figures; or bar charts showing comparisons or ranks; or line graphs showing changes over time; or maps showing geographical spread; or word clouds showing text analysis. There are numerous good practice guides and examples of how organisations have approached it.

If we were to think about data visualisation in the context of rural England: what data might we want to collect, process and present? For me, it would afford bringing together data about what it is like to live and work in rural England. For example, this could include data about (in no particular order): housing stock, condition and affordability; broadband and mobile connectivity, speed and cost; level of poverty (for individuals, children, people of working age and older people); access to transport (car ownership, public transport, community transport schemes); demographic profile (while the proportion of older people living in rural areas is higher than in urban areas, does it become more difficult to live in a rural place when you are no longer able to drive / need to access health and care services?); stock of jobs, sectors, pay, employment levels, economic inactivity; and/or access to public services (e.g. primary care, secondary care, social care, ambulance, primary school, secondary school, FE college, post office, library, Jobcentre etc.). Within each or all of these data strands it would be interesting to analyse and visualise: (i) funding: how much does it cost to deliver, how much money is being spent and by whom; (ii) sparsity: using the Rural Urban Classification, how does the analysis vary according to whether you are near a town, in a sparse setting or isolated setting – and how does it compare to urban areas? (iii) Projections – what happens if you project the data over 5, 10, 20 years: does it become easier, stay about the same, or more difficult to live in rural England? (iv) Comparators – how does this data compare to rural areas in Scotland, Wales and Northern Ireland? I’m sure RSN members will have their own thoughts and perspectives to add to this starting list…

While charts and graphics are powerful tools for communication, many organisations are yet to benefit from them. Their potential for understanding rural England is huge for as we become more exposed to data, visualisation provides a practical means of improving our understanding of what it shows. This presents opportunities to increase the visibility of rural England to Government, policy and decision makers, voluntary and community sector organisations, charities and businesses. How can we use data visualisation to generate further interest in all things rural? Equally, I am mindful that if we are going to use data visualisation to present information about rural England, we need to ask ourselves whose story we are telling and for what purpose…

………………………………………………………………………………………………..

Jessica is a researcher/project manager at Rose Regeneration and a senior research fellow at the National Centre for Rural Health and Care. Her current work includes helping public sector bodies to measure social value; evaluating a mobile sensory project; and undertaking a piece of work on migration. In her spare time Jessica sits on the board of a housing association. She can be contacted by email jessica.sellick@roseregeneration.co.uk or telephone 01522 521211. Website: http://roseregeneration.co.uk/ Blog: http://ruralwords.co.uk/ Twitter: @RoseRegen

Share this post: on Twitter on Facebook

Why global health matters to rural England How can we bridge the (rural) speech, language and communication divide?

Related Posts

Underground or Overground –should we bury electricity cables?

Economic Development, Government, Innovation, Technology

Underground or Overground –should we bury electricity cables?

AI

Commercialisation, Data, Economic Development, Employment, Innovation, Technology

What does AI mean for rural communities? 

plants

Community Involvement, Economic Development, Farming, Health, Nature

What more can we do to protect crops and plants? 

Sign Up

Jessica Sellick

Popular Posts

  • fragile natureWhat is the ‘nature funding gap’ and how can we bridge it? 
    April 24, 2025
  • Going for [rural] growth – how can regulators make a difference?Going for [rural] growth – how can regulators make a difference?
    March 20, 2025
  • What more can we do to tackle Serious and Organised Crime in rural areas? What more can we do to tackle Serious and Organised Crime in rural areas? 
    February 28, 2025
  • ArcticBeyond the ice – what (rural) engagement do we want to have in the ‘High North’? 
    January 27, 2025
  • bank of englandWhat more can we do to encourage people to make a difference to public life? 
    December 26, 2024

Search

Recent Posts

  • What is the ‘nature funding gap’ and how can we bridge it? 
  • Going for [rural] growth – how can regulators make a difference?
  • What more can we do to tackle Serious and Organised Crime in rural areas? 
  • Beyond the ice – what (rural) engagement do we want to have in the ‘High North’? 
  • What more can we do to encourage people to make a difference to public life? 

Archives

  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • February 2022
  • January 2022
  • December 2021
  • October 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • June 2018
  • May 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • August 2017
  • July 2017
  • June 2017
  • May 2017
  • April 2017
  • February 2017
  • January 2017
  • December 2016
  • November 2016
  • October 2016
  • September 2016
  • August 2016
  • June 2016
  • May 2016
  • March 2016
  • January 2016
  • December 2015
  • November 2015
  • October 2015
  • August 2015
  • July 2015
  • May 2015
  • April 2015
  • March 2015
  • February 2015
  • December 2014
  • November 2014
  • October 2014
  • September 2014
  • June 2014
  • April 2014
  • February 2014
  • January 2014
  • October 2013
  • August 2013
  • July 2013
  • June 2013
  • April 2013
  • March 2013
  • February 2013
  • December 2012
  • November 2012
  • September 2012
  • July 2012
  • June 2012
  • May 2012
  • April 2012
  • March 2012
  • January 2012
  • December 2011
  • October 2011
  • September 2011
  • July 2011
  • April 2010
  • March 2010
© Jessica's Rural Words 2025
Site by Sivi Luke